6th Annual Electric Vehicle Online Event – The TASCC- HIDAVe Project

Human Interaction: Designing Autonomy in Vehicles

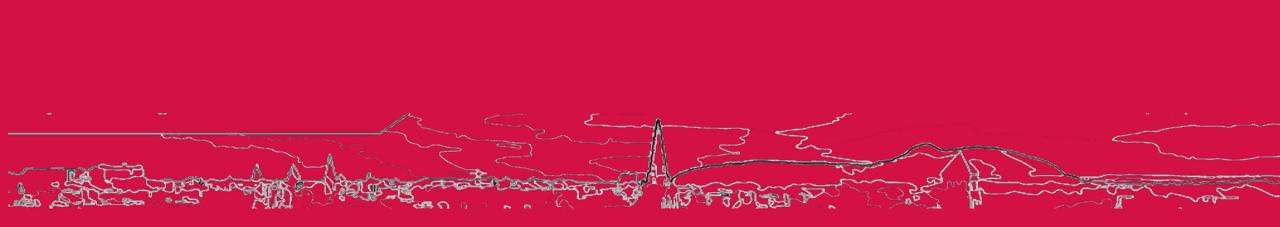
(2015-2020)

TOWARDS AUTONOMY

SMART AND CONNECTED CONTROL

Professor Pat Langdon Acting Head of TRI

Thursday 8th October 2020 - online



UNIVERSITY

Edinburgh Napier

Part of Edinburgh Napier University

TASCC

TOWARDS AUTONOMY SMART AND CONNECTED CONTROL

Autonomous Features of a Commercially-Viable Vehicle

Night and day autonomous driving on motorways, dual-carriageways and A-roads

Co-operative driving on motorways

Off-road driver assistance

Intelligent, adaptive vehicle with personalised interior

Navigation-based autonomous traffic avoidance

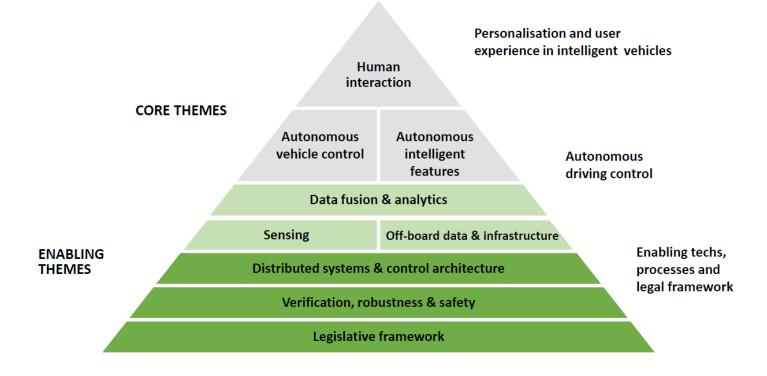
EVs are part of integrating domain of Transport (.GOV)

- Safety on road Decongestion
- Productivity -user
- Inclusion and Disability
- Communication CAR2CAR and CAR2ROAD - 5G
- Navigation and Traffic management
- Parking and decongestion
- Infrastructure is key part of this

Edinburgh Napier

 EV and Autonomy go hand in Hand

TASCC



TOWARDS AUTONOMY SMART AND CONNECTED CONTROL

TASCC Theme Coverage

HIDAVE Team

Human Interaction: Designing Autonomy in Vehicles (HI:DAVe)

Project Description

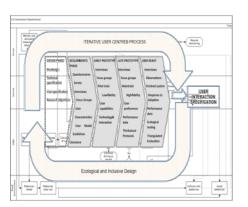
- Design intuitive, learnable, friendly, inclusive, multi-modal, adaptive concept interfaces for interacting with automated vehicles;
- Design the driver-vehicle and vehicle-driver handover tasks;
- Predict and validate the performance of drivers with automated vehicles;
- Monitor the driver and interpreting driver states in a range of scenarios; and
- Evaluate the effectiveness of different automation strategies, together with the associated interaction and interfaces with a range of automation use cases.

UNIVERSITY OF

CAMBRIDGE

Project Dates 01/12/2015 - 30/11/2019 JLR Prog. Director Aram Kradjian JLR Prog. Tech Lead Dr. Alex Mouzakitis JLR Tech Lead Lee Skrypchuk JLR Tech Support Simon Thompson Prof. Neville Stanton Uni Res Lead (Southampton) Dr. Pat Langdon Uni Res Lead 2 (Cambridge) Prof John Clarkson Uni Res Lead 3 Uni Proj. Manager Prof. Neville Stanton JLR funded PhD's 3 x PhD's Project Cost: £1.98m Total

Project overview


4: On-Road

Studies

1: Modelling and Design

2: Driving

Year 2

Year 4

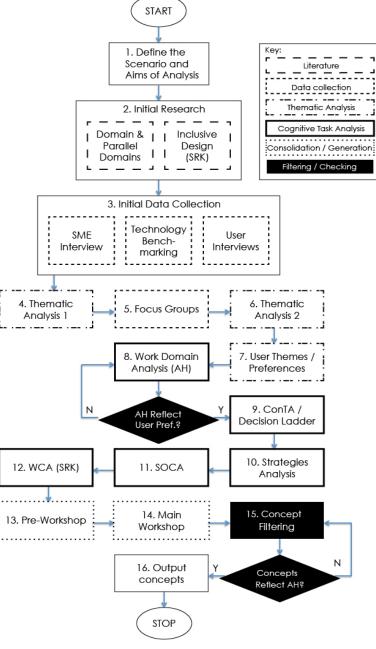
- How should we interface drivers with automated vehicles?
- What are the benefits of a combined Ecological and Inclusive Design approach?

UCEID method

HI:DAVe

Human Interaction:
Designing Autonomy in Vehicles

JLR #6703


- 1: Define scenario and aims
- 2: Initial research
- 3: Initial data collection
- 4: Thematic analysis 1
- 5: Focus groups
- 6: Thematic analysis 2
- 7: User preferences
- 8-12: Cognitive Work Analysis
- 13-14: Workshops
- 15: Concept filtering
- 16: Output concepts

User Centred Ecological Interface Design (UCEID)

Concepts

Edinburgh Napier

HazLanA\ answer to my questions + multimodality:

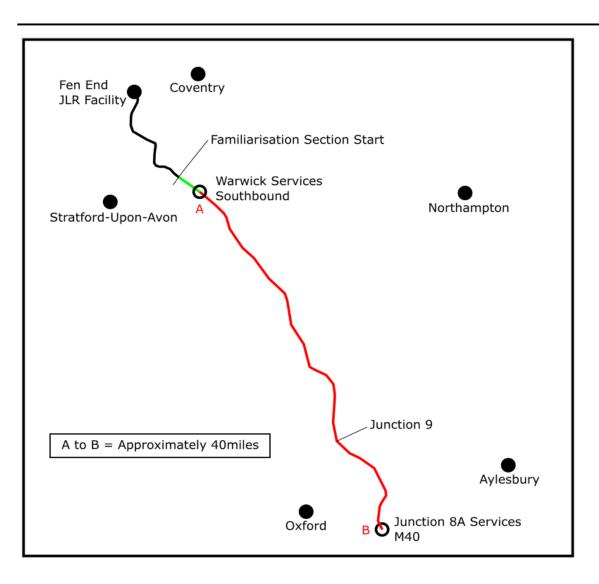
HIDAVE – MID FIDELITY Experiments

Lab setup

Console, cluster and HUD

JLR #6703

On-road study





JLR #6703

Driver interfaces

JLR #6703

Centre stack display for mode, instructions & updates

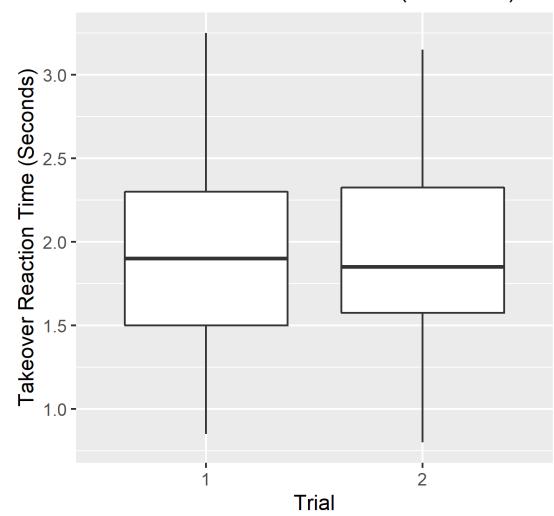
Interior ambient lighting colour reinforces mode awareness

Head Up Display can show mode, instructions & updates

Instrument Cluster can show mode, instructions & updates

Automation activation & deactivation buttons

Takeover times



Takeover Protocol Time (Seconds)

Takeover Reaction Time (Seconds)

TRI Projects and Book in progress

- TRI projects and technology focus
- CAVFORTH autonomous buses and Public acceptance
- Bids for Decarbonisation related projects with Innovate UK on Public opinion and behaviour change

"Designing Interaction and Interfaces for Automated Vehicles: user-centred ecological interface design and testing"

 In-depth case studies of interaction between drivers and automated vehicles

CRC Press
Taylor & Francis Group

 Iterative design process from modelling to simulator to on-road studies

