

Robert Evans CEO, Cenex

Cenex

Centre of excellence for low carbon and fuel cell technologies

Scope of Presentation

- Introduction to Cenex
- Why do research and analysis to inform the business case for EV Deployment?
- What types of research?
- Where Cenex operates with some examples
- Conclusions

Introduction to Cenex

- 'Not for Profit' Consultancy and Research Organisation
 - 13 years helping accelerate the shift to a low carbon economy
 - Passionate about low carbon transport and energy innovation
 - Operate to supply market and supply chain development through teams focused on transport, energy systems and innovation support
 - Track record of successful RD&D projects for electric vehicles, hydrogen and bio-methane
 - Work across networks through collaboration and partnership working
 - Manager the delivery of the UK's largest low carbon vehicle event (www.cenex-lcv.co.uk)
- Recent sponsors, clients and academic partners include;

- Support to fleets and cities via;
 - Research and consultancy that informs the business case for transitioning to low carbon vehicles
 - Implementation support that helps progress from planning to delivery and on to evaluation and reporting

Why do research and analysis on EV Deployment?

- May want to understand the national or regional opportunity and what is required to unlock it
 - UK-wide, Scotland, along strategic road network, rural areas, islands, etc
- May want to understand a more specific local area or city context
 - How to boost EV uptake for a city or an airport
 - Clean Air Zone\Ultra Low Emission Zone operation
- May want to understand the opportunities related to a category of vehicle
 - Commercial vehicles, taxis, car clubs, etc
 - Battery electric (BEV), Plug-in hybrid (PHEV), Fuel cell electric (FCEV)
- May want a fleet-specific business case to transition to EVs
 - Company specific, depot specific, etc
- May want to understand one key aspect of the business case in more detail
 - Geofencing
 - Potential for integration with on-site renewables, smart charging inc. Vehicle-to-Grid, etc.

Applying Techniques for Electric Taxi Studies (1)

PHEV

OR

EV

	Major Concern	Minor Concern	Not a Concern
Purchase price too high	100%	0%	0%
Maintenance costs	88%	0%	13%
Fuel costs	50%	13%	38%
Customers won't like them	13%	25%	63%
Viehicle will be charging too long during shifts	50%	50%	0%
Knowledge of how they work and drive	25%	38%	38%
Range	75%	25%	0%
Battery reliability	100%	0%	0%
Vehicle reliability	88%	13%	0%
Lack of charging points	75%	25%	0%

Human\User-centric approach

Emphasis on understanding user acceptance - Taxi driver key concerns captured through questionnaires

Applying Techniques for Electric Taxi Studies (2)

Operational Centric Approach

Use of telemetry helps identify duty cycles - translate duty cycle data and into energy consumption

Applying Techniques for Electric Taxi Studies (3)

Ford F	Procab			Annual Mile	eage (miles)		
(Die	esel)	10,000	15,000	20,000	25,000	30,000	35,000
Ownership period (years)	2	£1,076	£1,200	£1,312	£1,419	£1,521	£1,621
	3	£870	£985	£1,091	£1,194	£1,293	£1,391
	4	£761	£872	£977	£1,078	£1,178	£1,275
	5	£691	£796	£898	£997	£1,096	£1,193
	6	£623	£727	£829	£929	£1,028	£1,127
	7	£576	£681	£783	£884	£985	£1,084
	8	£534	£640	£743	£846	£948	£1,049
	9	£502	£609	£714	£818	£922	£1,025
	10	£477	£585	£692	£798	£903	£1,008

Difference in monthly cost of ownership relative to diesel (£)

LEVC TX	(REEV)			Annual Mile	eage (miles)		
with 1 top	up charge	10,000	15,000	20,000	25,000	30,000	35,000
Ownership period (years)	2	£238	£228	£205	£174	£139	£101
	3	£175	£139	£99	£56	£11	-£35
	4	£133	£93	£50	£5	-£42	-£89
	5	£86	£52	£11	-£32	-£77	-£124
	6	£67	£24	-£22	-£69	-£117	-£166
	7	£48	£3	-£44	-£91	-£140	-£189
	8	£29	-£17	-£64	-£112	-£161	-£210
	9	£14	-£32	-£80	-£128	-£177	-£227
	10	£2	-£44	-£92	-£141	-£190	-£240

Dynam	o (BEV)	Annual Mileage (miles)					
without top up charge		10,000	15,000	20,000	25,000	30,000	35,000
Ownership period (years)	2	£194	£134	£70	£5	-£61	-£127
	3	£57	-£5	-£69	-£136	-£202	-£270
	4	-£7	-£70	-£137	-£204	-£272	-£340
	5	-£51	-£114	-£181	-£248	-£316	-£384
	6	-£70	-£134	-£201	-£268	-£337	-£406
	7	-£84	-£149	-£217	-£285	-£354	-£424
	8	-£93	-£160	-£228	-£297	-£367	-£437
	9	-£101	-£168	-£237	-£307	-£377	-£448
	10	-£107	-£175	-£245	-£315	-£386	-£457

Business Case-Centric Approach

Energy input from operational analysis feeds into financial modelling of Capex\Opex, Total Cost of Ownership and comparative costs to help determine payback periods

Other Projects: Monitoring FCEV in Scotland and Smart Charging for EVs

Aberdeen

northsearegion.eu/hytrec2

Part funded by:

Conclusions

- Many good reasons to do Research and Analysis on EV Deployment
- Research designs typically combine:
 - user-centric techniques
 - operational-centric techniques
 - business-case interests
- Cenex active in:
 - Research and analysis combining both transport and associated energy systems, notably smart charging of EVs
 - Disseminating case studies
 - Developing projects with cities, fleets and academic partners (keen to find new partners)

Thank you for listening

cenex

Robert Evans

CEO robert.evans@cenex.co.uk

www.cenex.co.uk

Follow our projects

V2G: www.cenex.co.uk/vehicle-grid/ HyTrec2: northsearegion.eu/hytrec2 See our fleet advice tools at

For Cenex-LCV Technology Showcasing and Networking Event visit: www.cenex-lcv.co.uk

