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As software systems become increasingly complex, the demand for automated 
vulnerability detection has never been higher. Software vulnerabilities, such as 
buffer overflows, SQL injections, and cross-site scripting, pose significant risks to 
security, privacy, and the overall integrity of digital infrastructure. Traditional 
approaches to vulnerability detection often rely on static and dynamic analysis tools 
that require significant manual effort, domain expertise, and are frequently unable 
to generalize across diverse codebases. The recent advancements in machine 
learning, particularly in the field of Natural Language Processing (NLP), offer a 
promising avenue to address these challenges. Large Language Models (LLMs), 
such as GPT-4 and its successors, have demonstrated impressive capabilities in 
understanding and generating human-like text, making them well-suited to analyse 
and understand programming languages, which are structured similarly to natural 
languages. 



The primary objective of this Ph.D. project is to investigate the application of LLMs 
for detecting vulnerabilities in software code. The research will focus on exploring 
how these models can be trained or fine-tuned to recognize potential security flaws 
in a wide range of programming languages, understand the context in which 
vulnerabilities arise, and suggest possible mitigations or corrections. The key goals 
include: 
1. Model Development and Fine-tuning: Develop and fine-tune LLMs specifically 

for the task of vulnerability detection. This will involve curating large datasets 
of code containing both vulnerable and non-vulnerable examples, as well as 
leveraging transfer learning techniques to adapt general-purpose LLMs to this 
domain-specific task. 
 

2. Contextual Understanding: Enhance the LLMs’ ability to understand the 
broader context of code, such as the dependencies between different 
components, libraries, and APIs, which are crucial for accurately identifying 
vulnerabilities that may not be evident from a local analysis alone. 

3.  
Multi-language Support: Extend the capability of LLMs to detect vulnerabilities 
across different programming languages. This will require the development of 
multi-lingual models or the creation of language-agnostic features that can 
generalize across various programming languages and paradigms. 
 

4. Evaluation and Benchmarking: Rigorously evaluate the performance of the 
developed models against existing state-of-the-art vulnerability detection tools. 
This will involve the creation of comprehensive benchmarks that include a 
diverse set of real-world and synthetic code samples, covering a wide range of 
vulnerability types. 
 

5. Explainability and Interpretability: Develop methods to make the predictions of 
LLMs more interpretable to developers and security analysts. This includes 
generating human-readable explanations for why certain code segments are 
flagged as vulnerable and how they can be fixed, thus bridging the gap between 
automated detection and human expertise. 
 

6. Integration with Development Workflows: Explore how the developed models 
can be integrated into existing software development and continuous 
integration/continuous deployment (CI/CD) pipelines. This would enable real-
time vulnerability detection as part of the software development lifecycle, 
providing developers with immediate feedback on potential security issues. 
 
Methodology  
The research will adopt a multi-faceted methodology combining theoretical 
model development with empirical experimentation. Key components of the 
methodology include: 
 
1. Data Collection and Preprocessing: Curate a large-scale dataset of code 

snippets and full programs annotated with known vulnerabilities. This 
dataset will serve as the foundation for training and evaluating LLMs. Data 
preprocessing will involve tokenization, normalization, and possibly the 
anonymization of sensitive information. 

 
2. Model Training and Fine-tuning: Utilize transfer learning to fine-tune pre-

trained LLMs on the vulnerability detection task. This may involve 



experimenting with different architectures, such as transformer-based 
models, and exploring the impact of varying the size and structure of 
training datasets. 

 
3. Experimental Evaluation: Conduct extensive experiments to evaluate the 

performance of the models on both standard benchmarks and real-world 
codebases. Metrics such as precision, recall, F1 score, and the number of 
false positives/negatives will be used to assess the effectiveness of the 
models. 

 
4. User Studies and Feedback: Conduct user studies to gather feedback from 

developers and security experts on the usability and effectiveness of the 
LLM-generated vulnerability reports and recommendations. This feedback 
will inform further refinements to the models. 

 
 

 
Candidate characteristics 

 
Education:  

The ideal candidate should have a first degree with at least a 2:1 classification in 
one of the following subjects: Computer Science, Cybersecurity, Artificial 
Intelligence/Machine Learning, Software Engineering, Data Science or similar 
subjects. 

 
Subject knowledge: 

The ideal candidate should have a strong foundation in Computer Science and 
Software Engineering, with a deep understanding of Programming Languages and 
Data Structures and Algorithms. They should possess solid knowledge of Machine 
Learning, particularly in Natural Language Processing (NLP), and be well-versed 
in Cybersecurity principles, including common vulnerabilities and secure coding 
practices. Familiarity with the Software Development Lifecycle is essential, as is 
experience with handling and analysing large datasets. 

 
Essential attributes: 

• Strong Programming Skills 
• Understanding of Machine Learning 
• Knowledge of Cybersecurity 
• Analytical and Problem-Solving Skills 
• Research Aptitude 
• Data Management Skills 
• Attention to Detail 
• Good Communication Skills 
• Self-Motivation and Initiative 
• Collaboration Skills 
• Adaptability and Willingness to Learn 
• Critical Thinking  

 
 
 


