

School of Computing, Engineering, and the Built Environment
Edinburgh Napier University

PHD STUDENT PROJECT

Application instructions:
Detailed instructions are available at :
https://www.napier.ac.uk/research-and-innovation/doctoral-college/how-to-apply

Prospective candidates are encouraged to contact the Director of Studies (see details
below) to discuss the project and their suitability for it.

Project details

Supervisory Team:

• DIRECTOR OF STUDY: Dr Kehinde Babaagba (Email:
k.babaagba@napier.ac.uk)

• 2ND SUPERVISOR: tbc

Subject Group: Computer Science

Research Areas: Computer Science

Project Title: Large Language Models for Vulnerability Detection

Project description:

As software systems become increasingly complex, the demand for automated
vulnerability detection has never been higher. Software vulnerabilities, such as
buffer overflows, SQL injections, and cross-site scripting, pose significant risks to
security, privacy, and the overall integrity of digital infrastructure. Traditional
approaches to vulnerability detection often rely on static and dynamic analysis tools
that require significant manual effort, domain expertise, and are frequently unable
to generalize across diverse codebases. The recent advancements in machine
learning, particularly in the field of Natural Language Processing (NLP), offer a
promising avenue to address these challenges. Large Language Models (LLMs),
such as GPT-4 and its successors, have demonstrated impressive capabilities in
understanding and generating human-like text, making them well-suited to analyse
and understand programming languages, which are structured similarly to natural
languages.

The primary objective of this Ph.D. project is to investigate the application of LLMs
for detecting vulnerabilities in software code. The research will focus on exploring
how these models can be trained or fine-tuned to recognize potential security flaws
in a wide range of programming languages, understand the context in which
vulnerabilities arise, and suggest possible mitigations or corrections. The key goals
include:
1. Model Development and Fine-tuning: Develop and fine-tune LLMs specifically

for the task of vulnerability detection. This will involve curating large datasets
of code containing both vulnerable and non-vulnerable examples, as well as
leveraging transfer learning techniques to adapt general-purpose LLMs to this
domain-specific task.

2. Contextual Understanding: Enhance the LLMs’ ability to understand the
broader context of code, such as the dependencies between different
components, libraries, and APIs, which are crucial for accurately identifying
vulnerabilities that may not be evident from a local analysis alone.

3.
Multi-language Support: Extend the capability of LLMs to detect vulnerabilities
across different programming languages. This will require the development of
multi-lingual models or the creation of language-agnostic features that can
generalize across various programming languages and paradigms.

4. Evaluation and Benchmarking: Rigorously evaluate the performance of the
developed models against existing state-of-the-art vulnerability detection tools.
This will involve the creation of comprehensive benchmarks that include a
diverse set of real-world and synthetic code samples, covering a wide range of
vulnerability types.

5. Explainability and Interpretability: Develop methods to make the predictions of
LLMs more interpretable to developers and security analysts. This includes
generating human-readable explanations for why certain code segments are
flagged as vulnerable and how they can be fixed, thus bridging the gap between
automated detection and human expertise.

6. Integration with Development Workflows: Explore how the developed models
can be integrated into existing software development and continuous
integration/continuous deployment (CI/CD) pipelines. This would enable real-
time vulnerability detection as part of the software development lifecycle,
providing developers with immediate feedback on potential security issues.

Methodology
The research will adopt a multi-faceted methodology combining theoretical
model development with empirical experimentation. Key components of the
methodology include:

1. Data Collection and Preprocessing: Curate a large-scale dataset of code

snippets and full programs annotated with known vulnerabilities. This
dataset will serve as the foundation for training and evaluating LLMs. Data
preprocessing will involve tokenization, normalization, and possibly the
anonymization of sensitive information.

2. Model Training and Fine-tuning: Utilize transfer learning to fine-tune pre-

trained LLMs on the vulnerability detection task. This may involve

experimenting with different architectures, such as transformer-based
models, and exploring the impact of varying the size and structure of
training datasets.

3. Experimental Evaluation: Conduct extensive experiments to evaluate the

performance of the models on both standard benchmarks and real-world
codebases. Metrics such as precision, recall, F1 score, and the number of
false positives/negatives will be used to assess the effectiveness of the
models.

4. User Studies and Feedback: Conduct user studies to gather feedback from

developers and security experts on the usability and effectiveness of the
LLM-generated vulnerability reports and recommendations. This feedback
will inform further refinements to the models.

Candidate characteristics

Education:

The ideal candidate should have a first degree with at least a 2:1 classification in
one of the following subjects: Computer Science, Cybersecurity, Artificial
Intelligence/Machine Learning, Software Engineering, Data Science or similar
subjects.

Subject knowledge:

The ideal candidate should have a strong foundation in Computer Science and
Software Engineering, with a deep understanding of Programming Languages and
Data Structures and Algorithms. They should possess solid knowledge of Machine
Learning, particularly in Natural Language Processing (NLP), and be well-versed
in Cybersecurity principles, including common vulnerabilities and secure coding
practices. Familiarity with the Software Development Lifecycle is essential, as is
experience with handling and analysing large datasets.

Essential attributes:

• Strong Programming Skills
• Understanding of Machine Learning
• Knowledge of Cybersecurity
• Analytical and Problem-Solving Skills
• Research Aptitude
• Data Management Skills
• Attention to Detail
• Good Communication Skills
• Self-Motivation and Initiative
• Collaboration Skills
• Adaptability and Willingness to Learn
• Critical Thinking

